Extensions 1→N→G→Q→1 with N=C5⋊D4 and Q=C23

Direct product G=N×Q with N=C5⋊D4 and Q=C23
dρLabelID
C23×C5⋊D4160C2^3xC5:D4320,1627

Semidirect products G=N:Q with N=C5⋊D4 and Q=C23
extensionφ:Q→Out NdρLabelID
C5⋊D41C23 = C22×D4×D5φ: C23/C22C2 ⊆ Out C5⋊D480C5:D4:1C2^3320,1612
C5⋊D42C23 = C22×D42D5φ: C23/C22C2 ⊆ Out C5⋊D4160C5:D4:2C2^3320,1613
C5⋊D43C23 = C2×D46D10φ: C23/C22C2 ⊆ Out C5⋊D480C5:D4:3C2^3320,1614
C5⋊D44C23 = C2×D5×C4○D4φ: C23/C22C2 ⊆ Out C5⋊D480C5:D4:4C2^3320,1618
C5⋊D45C23 = C2×D48D10φ: C23/C22C2 ⊆ Out C5⋊D480C5:D4:5C2^3320,1619
C5⋊D46C23 = D5×2+ 1+4φ: C23/C22C2 ⊆ Out C5⋊D4408+C5:D4:6C2^3320,1622
C5⋊D47C23 = C22×C4○D20φ: trivial image160C5:D4:7C2^3320,1611

Non-split extensions G=N.Q with N=C5⋊D4 and Q=C23
extensionφ:Q→Out NdρLabelID
C5⋊D4.1C23 = C2×D4.10D10φ: C23/C22C2 ⊆ Out C5⋊D4160C5:D4.1C2^3320,1620
C5⋊D4.2C23 = C10.C25φ: C23/C22C2 ⊆ Out C5⋊D4804C5:D4.2C2^3320,1621
C5⋊D4.3C23 = D20.37C23φ: C23/C22C2 ⊆ Out C5⋊D4808-C5:D4.3C2^3320,1623
C5⋊D4.4C23 = D5×2- 1+4φ: C23/C22C2 ⊆ Out C5⋊D4808-C5:D4.4C2^3320,1624
C5⋊D4.5C23 = D20.39C23φ: C23/C22C2 ⊆ Out C5⋊D4808+C5:D4.5C2^3320,1625
C5⋊D4.6C23 = C2×Q8.10D10φ: trivial image160C5:D4.6C2^3320,1617

׿
×
𝔽